
Introduction to the MCAM Web API
Date: August 30, 2022
Updated: October 6, 2022
By: Ramona Optics Inc.

The MCAM provides a web API for seamless integration into automated workflows. At its core,
the MCAM web API tries to approach a REST API while enabling control over the MCAM’s
mechanical capabilities.

System Architecture
The MCAM server computer, that runs the web service for the MCAM acquisition control and
image analysis, listens on port 8800 for incoming requests. The system is assumed to be
connected to the local network via ethernet. The MCAM and the MCAM server are assumed to
always be connected to one other. The controlling scheduling system (e.g. Green Button Go) is
assumed to be installed on a different computer, and able to communicate with the MCAM
server on the same secure network.

Network Connection
The MCAM is assumed to be connected to the local network via ethernet. At minimum, a 1
Gbps network connection is required, and a 2.5 Gbps connection is recommended. Depending
on the demands of the application, a 10 Gbps can be accommodated on the MCAM server.

Security Model
The MCAM assumes that it is placed in a secured facility. The server is configured to listen to
any requests that arrive at its IP address. The server can be configured to require certain
credentials described below, but these are only advised to prevent accidental requests, and not
malicious requests to the MCAM server.

HTTP Basic Authentication
To enable HTTP Basic Authentication, the server must be started with the environment variable
RAMONAOPTICS_WEBMCAM_AUTHENTICATION set to “httpbasic”. The username and
password can be set from the RAMONAOPTICS_WEBMCAM_USERNAME
RAMONAOPTICS_WEBMCAM_PASSWORD environment variables.

Shared File Server Installation
Upon installation, the Ramona Optics will work with the client to mount the shared file server so
that it appears as a local folder on the MCAM server. We briefly describe a few known share file
configurations that are compatible with Ramona Optics’ MCAM server.

API Function Calls
There are 8 basic API endpoints:

1. GET /v1/status
a. The response contains an entry with information pertaining to the MCAM server

application. The main information returned in this endpoint is the version of the
server application described in owl_version
i. owl_version: The version of the MCAM server application.

2. GET /v1/mcam/search
a. This call is generally issued once upon instrument startup.
b. It returns a list of available serial numbers that may be available to clients to

open.
3. GET /v1/mcam/{serial_number}

a. Return status information fo the MCAM serial number specified in the request
4. POST /v1/mcam/{serial_number}

a. The MCAM server application claims control over the MCAM instrument.
b. The MCAM will automatically enter a retracted state when it is open.
c. This endpoint can take 10-30 seconds to startup and ensures that the motion

subsystem of the MCAM is ready to take commands.
d. This command may fail for the following reasons:

i. The MCAM is powered off while the MCAM server is powered on
ii. Another application is connected to the MCAM (e.g. the native

application).
5. DELETE /v1/mcam/{serial_number}

a. The MCAM may enter a retracted state when the communication connection is
closed.

b. This call is generally called if the user wishes to use the MCAM instrument with
the native graphical application for troubleshooting.

6. GET /v1/mcam/{serial_number}/state/search
a. Provides the list of available states for a particular MCAM.

7. GET /v1/mcam/{serial_number}/state
8. POST /v1/mcam/{serial_number}/state

a. Requests that the MCAM enters a particular state.
b. "acquisition" state:

i. In this state the sample holder (if present) is retracted and the MCAM is
ready to acquire images.

ii. The MCAM will automatically enter this state when the /run_assay
endpoint is called.

c. "loading" state:
i. The sample holder is extended into the defined loading position.

d. "unloading" state:
i. The sample holder is extended into the defined unloading position.

9. GET /v1/mcam/{serial_number}/assay/search

a. Returns a list of strings, each an identifier of the different types of the available
assays (or experiments) that can be run on the MCAM.

10. GET /v1/mcam/{serial_number}/assay/{assay_name}/configuration
a. Return a list of strings, each containing a valid configuration of the different

available assay configurations.
11. GET /v1/mcam/{serial_number}/assay/{assay_name}

a. Returns the assay schema.
12. POST /v1/mcam/{serial_number}/assay/{assay_name}

a. This is the main function to call to acquire and process data. It is described in
detail in subsequent sections.

API Function Workflow
The API is documented in detail in the staging website. The openapi.json can be downloaded
from the staging website. Most requests are HTTP Post requests and take in their parameters
through a json request body.

The general workflow can be summarized by:

1. Only a single client application is assumed to be communicating with the MCAM at once.
a. Initially, no locking mechanism exists to avoid conflicts between multiple clients.

2. The client application (installed a different computer) checks the GET
/v1/mcam/search endpoint.

a. If the returned value of serial_numbers is an empty list, then the webserver is not
connected to the MCAM instrument (this can occur if a user was trying to access
the MCAM with the native application).

b. If the returned value of the serial_numbers contains one or more strings, it
indicates the serial number of the MCAM connected by the server.

3. The client application initiates a connection with the MCAM of its choice through the
POST /v1/mcam/{serial_number} endpoint

4. The client application then probes:
a. GET /v1/mcam/{serial_number}/state/search

i. To get a list of the available mechanical states of the particular MCAM.
b. GET /v1/mcam/{serial_number}/assay/search

i. To get a list of the available assays for the MCAM
5. The client application sets the state of the MCAM to load the sample by issuing a post

request to POST /v1/mcam/{serial_number}/state with the desired state.
6. The client application issues a call to the POST

/v1/mcam/{serial_number}/assay/{assay_name} endpoint as described
below

a. After the call to run_assay, the MCAM may be in an arbitrary state. Typically, it
will be left in the “acquisition” state, though this can change between assays and
the particular assay configuration.

7. The client application sets the state of the MCAM to unload the sample by issuing a call
to the POST /v1/mcam/{serial_number}/state with the particular state of
interest.

8. Repeat steps 5-7 as desired.
9. Once the connection is no longer needed, one can call the endpoint DELETE

/v1/mcam/{serial_number} to release the resources associated with the MCAM
from the server.

The assay endpoint
We focus our attention on the POST
/v1/mcam/{serial_number}/assay/{assay_name}
endpoint.

The endpoint call specifies both the MCAM serial number that will complete the operation, and
the assay name that will be executed. The body of the request contains 4 keys:

● save_location: a string containing the location of the output files.
○ Required
○ This path is relative to the mcam server itself

● metadata: a dictionary containing metadata to be added to the acquired dataset.
○ Optional
○ This dictionary can contain multiple key value pairs. All keys must be strings. The

values may be strings, floating point numbers, or integers.
● configuration: A string containing preconfigured settings for the particular assay.

○ Optional
○ If not provided the default parameters for the given assay will be used.

■ The default parameters are almost surely not the ones you want to use.
● parameters: A dictionary containing key value pairs to overwrite in the assay parameters

specified in the assay_filename.
○ The default key value pairs are those provided by the settings file defined in

assay_filename.

For example, they may be specified as json application data. As a cURL request, these are
written as

curl -X 'POST' \

'http://mcam_ip_address.local:8800/v1/mcam/0x4EADBEEFCAFE1010BA5EDA11
/assay/acquire_and_save \

-H 'accept: application/json' \
-H 'Content-Type: application/json' \

-d '{
"save_location": "/shared_folder/data/my_file_location",
"metadata": {

"barcode": "A329812",
"operator_name": "John Doe"

},
"parameters": {}

}'

Environment Variables used by the MCAM Server
The MCAM server can be configured via the following environment variables to adjust the
server settings:

Environment
Variable

Usage Allowed values Example

RAMONAOPTICS_WEBMCAM_
AUTHENTICATION Specifying the authentication

method.
httpbasic or empty (no
authentication required)

httpbasic

RAMONAOPTICS_WEBMCAM_
USERNAME Username when httpbasic

authentication is used.
Any string, spaces are
discouraged.

ramona

RAMONAOPTICS_WEBMCAM_
PASSWORD Password when httpbasic

authentication is used.
Any string, spaces are
discouraged.

gigapixel

RAMONAOPTICS_WEBMCAM_
EXTRA_AVAILABLE_SERIAL_N
UMBERS

Specifying additional serial
numbers that “appear available”
when testing the MCAM.

A list of comma separated
strings.

RAMONAOPTICS_WEBMCAM_EXTRA_AVAILABLE_
SERIAL_NUMBERS=0x4EADBEEFCAFE1010BA5E
DA11

RAMONAOPTICS_WEBMCAM_
STARTUP_SERIAL_NUMBER Serial number to which the

WebMCAM Server connects to
upon startup.

A single serial number (string) RAMONAOPTICS_WEBMCAM_STARTUP_SERIAL_N
UMBER=0x4EADBEEFCAFE1010BA5EDA11

RAMONAOPTICS_WEBMCAM_
PORT Network port on which the

server lists.
A number specifying the port on
which the server listens

RAMONAOPTICS_WEBMCAM_PORT=8800

RAMONAOPTICS_WEBMCAM_
SSL_KEYFILE SSL keyfile used for https

communication.
A valid local path. RAMONAOPTICS_WEBMCAM_SSL_KEYFILE=/hom

e/ramona/cert/webmcamdemo.ramonalabs.
com+3-key.pem

RAMONAOPTICS_WEBMCAM_
SSL_CERTFILE SSL certfile used for https

communication.
A valid local path. RAMONAOPTICS_WEBMCAM_SSL_CERTFILE=/ho

me/ramona/cert/webmcamdemo.ramonalabs
.com+3.pem

MCAM Server Setup

Remote Access Via SSH
Ensure that the MCAM and MCAM server are powered on, and connected to the network.

a. The MCAM computer hosts an SSH server.
b. If no SSH key is setup on the machine, a local login can be used to install the

cat id_rsa.pub >> ~./ssh/authorized_keys

If working behind a router or firewall, you will have to set up the correct firewall rules and port
forwarding rules to the connection through.

Troubleshooting Firewall Issues
The MCAM computer will attempt to launch the web server in a tmux session on bootup.
However, access from another computer may be blocked due to network security. To verify that
the MCAM server is correctly started, use a terminal on the MCAM server to connect to the tmux
session. You can connect to the tmux session through the command:

tmux a

and you will have access to the running web server.

From the MCAM computer, you can check that the server is running by connecting to the
website through the installed web browser (Firefox or Google Chrome):

https://localhost:8800/docs

Verify that the screen looks similar to the above image of the correctly running web server.

http://localhost:8800/docs

Verify you can connect to the documentation page in a web browser by navigating to the ip
address and the port shown in the tmux session.

Once you have verified that the server is correctly configured on the MCAM computer, you
should disconnect from the tmux session:

Ctrl+b, then d

To list the IP addresses of the MCAM computer, you can use the command

ip a

The IP addresses will be listed next to network each interface. The IP address will often start
with 10.X.X.X where each X represents a number between 0 and 255 (inclusively). Once the IP
address of the MCAM server has been identified, you can attempt to connect to the MCAM
server on your workstation through the address:

https://10.X.X.X:8800/docs

http://10.x.x.x:8800/docs

If you are unable to connect to the WebMCAM webpage, a temporary solution to get around a
problematic firewall is to use a WiFi hotspot on the MCAM computer and connect to it directly.
This should allow direct communication without any firewall interference. If you are resorting to
this solution, you should contact your network administrator to ensure that a long term solution
can be found to connect to the MCAM server through a wired ethernet connection.

Windows SAMBA Setup
If a Windows SAMBA is required Ramona Optics will install the required cifs utilities on the
MCAM server. Users may work with the Ramona Optics engineering team to ensure that the
shared drive configuration is correctly added so that the shared drives are permanently
mounted.

If a Windows SAMBA is required Ramona Optics will install the required cifs utilities on the
MCAM server. Users may work with the Ramona Optics engineering team to ensure that the
shared drive configuration is correctly added so that the shared drives are permanently
mounted. A sample configuration may resemble:

sudo apt install cifs-utils
Create the credentials file
echo username=myusername > /home/ramona/.smbcredentials
echo password=mypassword >> /home/ramona/.smbcredentials
echo domain=domain >> /home/ramona/.smbcredentials
Add the line to /etc/fstab
//localhost/sambashare /shared cifs
credentials=/home/ramona/.smbcredentials,file_mode=0755,dir_mode=0755,user=ramona,group=ramona,nobootwait
0 0
sudo mount -a
Ensure that the drive is visible
sudo reboot
Ensure that the drive is still visible

https://help.ubuntu.com/stable/ubuntu-help/net-wireless-adhoc.html.en
https://cifs.com/
https://cifs.com/

Staging Website
https://webmcamdemo.ramonalabs.com:8800/docs/

Gaining access to the virtual MCAM shell
If you need to gain access to a virtual MCAM bash shell, please contact Ramona Optics by
email and provide them your public key for SSH at help@ramonaoptics.com . We will provide
you information about the login IP and the port.

Customization of Assays
The MCAM API allows for a large amount of customization based on the required experiments.
All experimental parameters are exposed to the end user based on key-value pairs stored in a
json dictionary. Many of the parameters are described in the endpoint GET
/v1/mcam/{serial_number}/assay/{assay_name} . Please contact Ramona Optics for
more information about assay parameters.

Known Limitations
1. Long running assay may cause hangups with blocking http requests.

a. Currently assays are expected to run between 1-second and 60-seconds.
b. However, longer assays may run up to 300-600 seconds (5 minutes) which may

cause TCP requests to drop.
2. Multiple client requests can conflict.

a. Currently there is no locking mechanism stopping multiple clients from issuing
calls.

b. All API calls are handled sequentially meaning that once an assay is started, it
cannot be polled.

3. Assay parameters cannot be easily validated.
● An endpoint that can validate the choice of parameters for a given assay without

executing it.
● In future versions of the MCAM server, we plan to create validation endpoints that

simply validate, without executing the assay.
4. The software of the MCAM Server cannot be updated through a web API call.
5. Mounting network attached storage cannot be accomplished through a web API call.

https://webmcamdemo.ramonalabs.com:8800/docs#/
mailto:help@ramonaoptics.com

